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ABSTRACT

Two problems in statistical communication theory, the detection and estimation of intel-
ligence-carrying signals are considered for the case of transmission through a multidimen-
sional Gaussian random channel. Such a channel is characterized by the property that a
deterministic input results in a set of received waveforms which are sample functions of
Gaussian processes.

For the detection problem, a receiver is found which operates on the set of received
waveforms: and gives as outputs, voltages proportional to the logarithm of the likelihood
functions of the possible transmitted signals. For the estimation problem, it is assumed
that the intelligence-carrying signal is itself a sample function of a Gaussian process and
a mathematical description is presented of a receiver which has as its output the maximum
a posteriori estimate of this signal. Examples are presented in which optimum receivers
are found for both the detection and estimation problem.
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ON THE DETECTION AND ESTIMATION PROBLEM

FOR MULTIDIMENSIONAL GAUSSIAN RANDOM CHANNELS*
INTRODUCTION

In communication systems where information is to be transmitted from a source to a re-
ceiver, the intelligence-carrying signal is always partly distorted and masked in transmission.
A major problem in the field of statistical communication theory is to determine a method to
process the received waveforms in order to recover from them as much of the intelligence as
possible.

In certain communication systems the receiver must determine if a certain signal (or more
generally, which of given set of signals) is present in a received waveform. An example of a
system of this type is a digital transmission system where a predetermined set of signals is
chosen as the signaling alphabet. In other communication systems the receiver is required
to- operate on the received waveforms in order to produce an estimate of the waveshape of
the intelligence-carrying signal. An analogue voice communication circuit might serve as an
example of such a system. The processing of the received waveforms in these two types of
systems will be called, respectively, detection and estimation.

Much of the original work on the detection!® and estimation®® of signals has been con-
cerned with the processing of a single received waveform which consists of the intelligence~
carrying signal perturbed by additive Gaussian noise. A wide variety of practical problems,
however, cannot be satisfactorily described by such a model. In the first place, for most
practical situations, distortions other than additive Gaussian noise are present in the chan-
nel. Secondly, in many communication systems, the receiver is required to simultaneously
process multiple received waveforms rather than the single received waveform assumed in
the simplified model. In this report, an attempt will be made to increase the generality of
the mathematical model so as to broaden the class of problems to which the theory applies.
For other treatments of this problem, the reader is referred to the work of Turin,%10
Price,!!"12 Kailath!3 and others.14~15 The portions of this study concerned with the detec-
tion problem will be found to overlap, to some degree, the work of Kailath.

FORMULATION

In this report, the problems of the detection and estimation of signals will be considered
for the situation where the signals have been transmitted through a multidimensional
Gaussian random channel. For the purposes of this report, a multidimensional Gaussian ran-
dom channel will be defined as a transmission channel which, having been excited by any

“deterministic signal, results in a set of received waveforms which are sample functions of
Gaussian random processes. Thus, the term multidimensional refers to the multiplicity of the

received waveforms and the term Gaussian describes the joint statistics of these waveforms
*Released 21 August 1961.
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Figure 1. Multidimensional Transmission Channel

In general, these waveforms may be correlated with one another. It is to be noted that the
channel is not required to be linear.

Such a channel can be interpreted in terms of the block diagram shown in Figure 1
Here, the intelligence-carrying signal, $(¢), enters the multidimensional transmission
channel and results in the set of M received waveforms. rl(g)‘,, ,2(5), . rM(;), The multi-
dimensional channel will be said to be Gaussian if the conditional probability of this set
of received waveforms, given a particular S(¢), is a jointly Gaussian probability density
function.

It should be emphasized that the ensemble statistics and not the time statistics of
the received waveforms are required to be Gaussian. For instance, in the case of a single
received waveform composed of a deterministic signal in additive Gaussian noise, the en-
semble statistics of the received waveform are Gaussian while in most cases the time
statistics are not. Thus, the classical problem of the detection of a known signal in addi-
tive Gaussian noise is seen to be a special case of this model.

Since there are inherent differences in the formulation of the detection and estimation
problems, it will be convenient to discuss each of these problems separately. For the

detection problem, referring to Figure 2, it is assumed that a set of M received waveforms

rl'(t), r2(t), vy rM(t), are available at the receiver over an interval (0, T). These wave
forms. are the resuit of one out of ¥ signals S»(')(‘t‘), i =1,2 ..., N, chosen by the
(1) o
1S (tro -
| (29 ‘ 2
5(2)“ ro | — , B rl.(t) . o
‘ : rz(f) o
CHANNEL —=—— RECEIVER
rM('Tt') =
(N | N
' )(')-O : | —O

Figure 2. Detection Problem



transmitter with a priori probability p(5(*/), entering the transmission channel. The ¥ re-
ceived waveforms are to be processed by the receiverso as to determine which of the ¥
signals was actually chosen by the transmitter. A complete statistical description of the
set of received waveforms is assumed available to the receiver as well as the a priori
probabilities of the transmitted signals.

A slight variation of this detection problem which arises in radar applications is shown
in Figure 3, Here the transmitter always transmits the same deterministic signal but the

i —
——*1  CHANNEL | ‘
i
: }——o'
—a ____OZ‘
TT1 CHANNEL 2 ‘
S (x) — >
XMTR : RECEIVER;_ON'
CHANNEL N
-

Figure 3. Detection Problem for Radar
signal travels through one of N transmission channels with some given a priori probability.
These N channels have different transmission characteristics; for example, in the case of
range radar, different delays would be assigned to the different channels. The receiver is
to decide on the basis of a (0, T) sample of the M received waveforms rl(g), rz(t)’ s rM(g),
through which of the N channels the signal passed. As in the previous case, it is assumed
that the statistics of the received waveforms and the a priori probabilities of the channels
are known to the receiver.*

For either configuration of the detection problem, the situation is one of multiple-alter-
native hypothesis testing. That is, given the set of received waveforms, the receiver is
to choose among N mutually exclusive hypotheses. For the radar problem, the ith hypoth-
esis, denoted H, corresponds to the situation where the signal was transmitted through
the ith channel, while for the communications problem, H_indicates that S(U‘(t) was sent by
the transmitter. ‘

A short discussion of multiple-alternative hypothesis testing follows. The reader is re-
ferred to the references for amplification of these remarks. Woodward! has observed that
a receiver which presents the a posteriori probabilities of the hypotheses Hi’ i=12..,N

ey ;.

tells as much as it is possible to know about these hypotheses from a knowledge of the
6-17

received waveforms. A Bayes’ decision rule, which minimizes the average cost of

* Because of the repetitive nature of the radar transmitted pulse, the apriori probabilities for the hypothcses
during the interval (0, T') can sometimes be taken as. the a posteriori probabilities: for the: hypotheses during
the preceding interval. )




the decisions, has been shown to depend on the relative magnitudes of these a posteriori
probabilities. Another decision rule, the Neyman-Pearson criterion, 8 is useful in testing
between two hypotheses where it is not convenient to assign a priori probabilities to these
hypotheses. A generalization of this criterion to multiple-alternative hypothesis testing

14

has shown" ™ that the decision can be based on the relative magnitudes of the likelihood

functions* for the hypotheses. If the a priort probabilities of these hypotheses are known,
the a posteriori probabilities can be obtained from the likelihood functions by Bayes’ rule.
Thus, all of the above criteria for multiple-alternative hypothesis testing depend on the
relative magnitudes of the likelihood functions or the a posteriori probabilities (which can
be obtained from the likelihood functions). Since the logarithm is a monotonic increasing
function of its argument, decisions can be made using any of these criteria on the basis
of quantities which are proportional to the logarithm of the .V likelihood functions.

The optimum detector can then be divided into two parts. The first part operates on the
received waveforms and results in outputs which are proportional to the logarithm of the
likelihood functions. The second part weights these outputs in accordance with some cri-
terion in order to make a decision between the hypotheses. In this report, systems will be
considered only for instrumenting the first part of this detector.

The formulation of the estimation problem will next be considered. It is assumed that
the intelligence-carrying signal to be estimated is itself a sample function of a Gaussian
random process. This signal enters the transmission channel, resulting in the M received
waveforms. rx(t)’ r2(t), ey rM(t).‘ This problem can be interpreted in terms of the block
diagram shown in Figure 1, but now §(¢) is one out of an infinite number of signals, these
signals being sample functions ot a Gaussian process. It is desired to operate on the set
of received waveforms, received during the interval (0, T), to obtain an optimum estimate
of the signal 5(¢t). The only restriction placed on the channel is that for any particular
realization of the signal, the set of received waveforms are sample functions of Gaussian
random processes; that is, we have a multidimensional Gaussian random channel. For
simplicity it is assumed that the intelligence-carrying signal is statistically independent
of the statistics of the channel.

It should be noted that many operations normally associated with the transmitter may be
considered as part of this Gaussian random channel. For instance, if the intelligence-
carrying signal is modulated before transmission, this modulating process (linear or non-
linear) can be included in the channel operation. Thus, the estimation of modulated signals
corrupted by additive Gaussian noise, a problem previously considered by Youla,® would be
a special case of this problem.

The optimization criterion used in this report is that of maximum a posteriori probability.5
This method of estimation requires the receiver to choose which realization of the intelli-
gence-carrying signal was most likely sent, given the set of received waveforms
r (t), r (t), ey rM(t) More explicitly, the receiver is to choose the realization of the intel-
llgence carrying signal which maximizes the a posteriori probability. This optimization

* The term likelihood function is used to describe the conditional probability of the effect (the recelved wave-
forms).given the ¢ause (the transmitted sngnal)
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criterion has also beenreferred to in the literature as maximum likelihood estimation® and
a posteriori most probable estimation.®

It should be realized that the output of the receiver in the estimation problem is an
analogue signal while the receiver for the detection problem has outputs which are volt-
ages that represent the conditional probabilities for each of the hypotheses.
A MULTIDIMENSIONAL ORTHOGONAL EXPANSION

Since both the detection and estimation problems have been phrased in terms of multiple
received waveforms, it is convenient to introduce vector and matrix notation. Consider the
M waveforms, no(e), n,(t), ..., ny(t), each of which is a sample function of a random pro-
cess. In general these waveforms may be correlated with one another. These M waveforms
can be denoted by the M dimensional vector n (), the jth component of this vector, written
nl.(t), representing the jth waveform. Let the ensemble means of these waveforms be writ-
ten as the vector m(¢). The jth component of this vector mean is then given by the expres-
sion,

ml.(t) =E {n;(t)}, (1)

where E { } denotes the statistical expectation of the term in the brackets.

The second order statistics of these M received waveforms can be described by a co-
variance function mactrix, written 5(t,x). The element in the jth row and % th column of this
matrix is defined by the expression

Rik(t,x) =E{ [rl.(‘t) - ml.(t)J [re@)-m (x)] }. (2)
Note that if the waveforms are sample functions of Gaussian random processes the mean
vector M(¢) and the covariance function matrix R (¢,x) give a complete statistical descrip-
tion of the waveforms.
In expressions involving vectors and matrices, the following notation will be used. The
dot product of two M dimensional vectors 4 (¢) and B(t), written 4 (¢) *B (¢), is given by the
expression

IORYI0NS

..‘ Mz

A [(2) B(2). (3)

The trace of the M x M matrix !S(t,x) will be written T r [[S (¢,x).] and is defined as.

A AN
r [R(¢,x)]'2 i>=:i R, (t,%). (4)
Using this notation, a summary will be presented of a multidimensional expansion that is
useful in the solution of both the estimation and detection problems. This expansion is a
generalization'® of the Karhunen-Loeve 292! expansion to vector stochastic processes. The
proof of the following statements. regarding this expansion can be found in the literature!4-15
Let the M-component vector stochastic process 7(¢) with mean vector m(¢t) and covanance

function matrix R(t x) be represented in the interval (0, T) by the expression



R =m@) +2 NG, 02:e<T (s
j=1
If the vectors 8’.(&) are chosen as the eigenvectors of the matrix integral equation

) =N J R(ex) 6 (x)dx, 0Ze LT, )
o ™ i

and if these vectors are orthogonal and normalized such that

T _ —
of 6] () -6, (1) de = Sik , (M

then the coefficients N/, satisfy the following equations:

E{NI.} =0, (8)
8.
k

E{NN,} = L5 )

VN . )
I.

Herte 3]_1‘ is the familiar Kronecker delta defined as

>

8 ? jzTkE , (10)

ik = j =k

From equations (5) and (7), the coefficients N; are given by the expression

T

N. =] [Re)-mb)] -Ei(z)‘dz.. (11)

Note that subscripts have been used both for indexing eigenvectors of integral equations and
also for denoting components of vectors. Then, the & th component of the vector 6 (¢) will

. L J
be written 6] k(‘) , the comma between the subscripts differentiating this notation from the

double subscript notation used for elements of matrices.
From a generalization of Mercet’s theorem, the i-jch element of the covariance function

matrix can be written

) |
R..(tx) = 5 ——— . | (12)

2 k=1 A

If an inverse covariance function matrix, Q (x,z), is defined as
s

T
JR@DQ (o) dx = 80-2) 1, (13)
0 ~ ~ ; ~



where 1is the unit matrix and 8(¢- z) is the Dirac delta-function, the ;- jth element of this
~o
matrix can be expanded in the form

s ]
Qii(x’z) =k§1 kk ‘9::,;(") 'Gk,i(z). (14).

Let us now assume that the components of n(t) are sample functions of Gaussian random
procusses. Then, the coefficients N are Gaussian random variables and from equation (9)
are uncorrelated and thus statlstlcally independent. The probability density for the noise

vector n (t), which is the joint probability of the set of coefficients N~i , can thefn be writ-

o| /N '
P(i) ‘V/—Z% exp{’-;_ )\ N 2) ‘ (15)

k"l

p(n )- : /——‘exp‘ 2k N N ’ (16)
=1 .

From equation (11), the series k§-:1 >\k Nk’ % can be written

ten*

or

T M ®
2 )\ N 2 = ff > Z (n. (t) m. (t)] [n (x) m (x)] N6 (6 (*)de dx. (a7
0 0i=ij=1 k=1 k ki7" k,j

Referring to equation (14), and using vector and matrix notation, this series becomes
TT _ _
SANE = [ @ -m@®] - 0¢x) [a()- m(x)] dedx. 18)
k=1 k k 0 o ~
Since Qj‘.,i(z,x)’ = in(x"‘) it can be shown that equation (18) can be rewritten as
TN, =2 f [7(e) =m (¢)] [fo(z x) [n(x)-mx)] dxlde. (19)
k=1

From equation (16), the natural logarithm of the probability density for the noise vec-
tor n(t) can be expressed as

' - 1 2 :
I 7)Y =K += % lo K--Z)\N , (20)
og p(n) T L kol
where K is a constant. Combining equations (19) and (20) we can write
®. T ot
log p(%) =K +%— % log A, - [ [B@)-m@]- [ [ Q@tx) F(x)- A} dx] de. (21)
k=1 0 0o

* It is realized that some difficulties are encountered in the convergence of equations (15) and (16). Such
difficulties can be avoided by using a finite number of terms in the series or by considering the ratio

-L((P) where i:o(t) is a reference noise process. These difficulties will be ignored in this report but the

;e‘l‘lder should utiderstand that one of these. two procedures can always be used ‘to rigorize the work to'
ollow.



In the work to follow, the set of received waveforms 7 (¢) will be represented in the interval
(0,T) by a multidimensional orthogonal expansion with uncorrelated coefficients similar
to that given for @ (¢) and described in equations (5) through (11). In the most general case,
the mean vector and the covariance function matrix may depend upon which particular real-
ization of the intelligence-catrying signal was transmitted (for the estimation problem) or
which hypothesis was true (for the detection problem). Note that if the covariance function
matrix depends upon these conditions so will the eigenvectors and eigenvalues of the ma-
trix integral equation having the covariance function matrix as its kernel. The superscript
i will be used with functions in the detection problem to indicate that hypothesis H; was
assumed true in writing those functions. For the estimation problem, the superscript s
on the functions will indicate that a particular realization of the intelligence-carrying sig-
nal was assumed.

CALCULATION OF THE LIKELIHOOD FUNCTIONS (DETECTION PROBLEM)

In this section systems will be derived which operate on the s:t of received waveforms
and result in outputs which are proportional to the logarithm of the N likelihood functions
corresponding to the N possible hypotheses. The mathematics needed to derive expres-
sions describing these systems have been discussed in the previous section. By analogy
with this work, let us consider that the set of received waveforms, 7(¢), are expanded
in a multidimensional orthogonal expansion, under the assumption that hypotheses H,is
correct. Then, following the development given in the last section, an equation is obtained
for the logarithm of the conditional probability density of 7(¢), assuming the truth of hypoth-
esis H,. This conditional probability density is just the likelihood function for hypoth-

esis H, and, referring to equation (21), is given by the expression

log p(71,) =K +3 % log A, - { 5@ -9 0 - {0900 (7 -7 Ol delae.
i ’ ’ (22)
Here, m'%) (t) is the vector mean of r(t), assuming hypotheses H,; g(i)(t,x) is the inverse
covariance function matrix of r(¢), assuming hypothesis H“,; )\(il); K‘;), )\(‘; .... are the eigen-
values of a matrix integral equation having the covariance function matrix Qm(t,x) as its
kernel; and K is a constant.
To emphasize the meaning of the notation, the jth component of the vector mean

m (¢) is given by the expression
m Oy = E(r® LH, ), (23)

where E { (i(t) IH;‘} is the conditional expectation of rl.(t), assuming hypothesis H,. Also
the j-kth element of the covariance function matrix R%)(,x) is given as

R(D(,zy = ECLri0)-m D)1 [375) - m )] 14, ). (24)



The receiver is then to calculate the functions log p(7 | H)fori=1,2,.., N. The
assumption has been made that the receiver has a complete statistical description of the set
of received waveforms. Since the received waveforms are Gaussian random processes, the
receiver must have available the components of the vector mean ¥ (¢) and the elements
of covariance function matrix R @)(¢,x) for all values of i.

As an illustrative example, consider the transmission channel shown in Figure 4 where
the additive noise n;l,(t) and multiplicative noise "2(") are Gaussian, have zero mean and

are uncorrelated with one another. Then the received waveforms are Gaussian processes

r. (t)
(1) L

s (1) @,

(2)
T — n (1)
s (Nt | ralt)
n_(t
2( )
Figure 4. Example
with means and variances given by the equations:

m () = 59) (28)
m () =0 (26)
~R1 NCEE E {nl(t)‘ n‘l,‘(x)} 27)
R (6,3) =E {n,(0) ny(x)} 59() $¥x) ‘ (28)
R @x) =R $x,t) = {n (0)n ()} SDx). (29)

The receiver must then have knowledge of the N signals sy, S, ..., S™(e) and

the covariances E {nl(t) nl(x)}, E {nz(t‘) "2(")}’ and £ {n-l‘(t:)rnz(x)}.
Let us now return to equation (22) and investigate systems which will calculate these
functions. Defining the quantities B) and CU¥)(7) as



Al g Gy ‘ ap)
B 2 3 /cZ:I log )\k , (30)

D@L - flrw-m V@) - 1 0@ (7 -7 D) ds] d, (31)
0 o~

we cawn Jrite

log p(F|H) = k +BE + (7). (32)
The first term, the constant K, is independent of the index ¢ and thus can be ignored. The
second term, B%), will in general be different for different values of the index ;. However,
it does not represent an operation on the received waveforms and can be calculated prior
to communicating. It should be noted that if the covariance function matrix ﬁ(i)'(t,x) is
independent of the index i, then B*) would also be independent of the index i and could
also be ignored. The C'(7) is a function that must be calculated from the M received
waveforms. Rewriting equation (31) in terms of the components and elements of the vectors

and matrices we have

. T MM . t . .
c¥iry = JEzzho- m WL [0 @x) [ - m,2) ] dx dy, (33)
which explicitly displays the operations necessary to calculate C W7y,

A system for calculating the function log p (T ’H‘. ) for the case of two received wave-
forms is shown in Figure 5. In this diagram, the blocks labeled Qii (t,x) are linear filters,
Q‘.i(t,x) being the response at time ¢ of the filter to a unit impulse applied at time x. The
complete receiver, of course, must contain M of these systems, one for each possible
hypothesis. A complete receiver is shown in Figure 6 for the single input case.

A receiver which has outputs which are proportional to the a posteriori probabilities
of the hypotheses instead of the likelihood functions can be obtained by a slight modifica-
tion of the previous receiver. From Bayes’ rule, the a posteriori probability of H, written
p(H, |7, is given in terms of the likelihood function p tal H,) and the a priori probability
p(H,)as

p(H|7) = k p(FIH,) p(H)), (34)

where t is a constant. Taking logarithms and referring to equation (32), it is seen that

the logarithm of the a posteriori probability for #, can be written

log p(H|7) = (K +k) + (B + log p(H;)) + CH(F). (35)

Thus, the same basic receiver can be used to obtain the functions log p(H, |7) except

for the bias term which is changed by the addition of the term log p (H,). If all hypotheses

have equal a priori probabilities, no modification of the basic receiver is required.
Configurations for obtaining the likelihood functions. (and a posteriori probabilities)

can be devised other than the 6ne described in equations (30) through (33) and shown in.

1)
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ile(?,x)
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Figure 5. Calculation of log p(r_lH‘.‘) for Two Received Waveforms

Figures (5)and (6). For instance, log p('f"|Hl.) can be written,

log p (7 [H,) =K +D© +EW¥)7), (36)
where ['*) a bias term which can be calculated before transmission, is defined as
Al 2 . 1 rr . . . ‘
pW 25 S log A -5 [ [ W) 0O x) 1 D(x) dx de (37)
2 k=1 k 2 0 0 ~

and EY%)(F), a term which is calculated from the received waveforms, is given as.

. rr . » .
EY) & T ED@ -370) - 0P 7() dx de. (38)
00

la%s

Note that if the inverse covariance function matrix i$ independent of the index i,

n



1Y

;)

e

( )dt

e

T ‘
JERLE

m (N (1)

Figure 6. Complete Receiver - Nondiversity Case

TT
the term - 1/2 [ [ 7(¢) + Q(t,x) 7(x) dx d ¢t will be the same for all hypotheses and thus
00 ~

can be neglected.

An example illustrating some of these ideas for the case of a single received waveform
is shown in Figure 7 Here, the transmitter chooses one of the signals sin ¢, i =1,

2, ... N, and transmits it during the interval (0, T). The multiplicative noises m(¢) and
m,2(~t‘)« are assumed to be uncorrelated, stationary, Gaussian processes with zero means.

and identical covariances R _(t-x),

R (x) = E{m (d m ()} = E {m,(t) m,(x) }. (39)
The additive noise n(t), which is uncorrelated with the multiplicative noises, is assumed
to be a stationary Gaussian process with zero mean and covariance R (t-x). The block
denoted 90 degrees is assumed to be a 90 degree phase shifter; that is, a nonphysically
realizable linear filter whose -output is the Hilbert transform of its input.

12
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Figure 7. FSK Transmission through a Fading Channel

If the keying interval T is large enough (T > > 51- for all i) the output of the 90 de-
2

gree phase shifter will be cos w ¢t and the received waveform can be written

r(t) = n(t) + m (¢) sin w;t + m(¢) cos w,e, (40)

or

r(t) = n(e) + R(¢) sin [w‘.t - XOBR (41)

where R(¢) is Rayleigh and ¢(¢) is uniformly distributed (- 7, 7). This model, which has
been previously considered by Price, 1! then represents a narrow-band Rayleigh fading
signal with additive Gaussian noise.

The mean: of r(t) is identically equal to zero. for all H‘. and the covariance RY)(¢,x)
can be written as the difference of the two variables ¢ and x and is given by the expres-
sion

R (e-x) = R (t-x) + R_(t-x) cos wyt-x). (42)

Referring to equations (30) through (32) it can be shown that the bias term B¥) is the same
for all hypotheses. The optimum receiver is then given by the block diagram shown in Fig-
ure 8, where the impulse responses A% (x,z) of the time varying linear filters are the solu-
tion to the integral equation,

T o
f [Rn(»t-x) + R (¢-x) cos w':(t-x)] R (x.2)dx = § (¢-2), (43)
. ,

0< ¢z < T

Ignoring the physical realizability of these filters and assuming that T is large enough so
that Fourier transform techniques can be used, the transfer function of the i th filter is
given approximately by the expression

$@) +1/2 (¢ (@t w) + $ol@-w)]

”:(i )(a)) = (44)
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T
o ( )dt |—w

< ( )dt p——-

!

(N)
Th (tz)

T

Figure 8. Optimum Receiver for Example Shown in Figure 7.
Here ¢'n (w)and ¢, (w) are respectively the power spectra of the additive and multiplica-
tive noises. Thus the filters are essentially band reject filters with the stop band cen-
tered at w,.

The outputs of the receiver shown in Figure 8 are, except for the omission of additive
constants, the logarithm of the likelihood functions (or the logarithm of the a posteriori
probabilities since the a priori probabilities were assumed equal). These functions are
then used in making the decision.

As a second example consider the transmission system shown in Figure 9, where the
intel‘ligence-carrxiﬁg signal S(t) is one of the N signals §GYe), i =1,2,..,N. The two

n(t)

S(t)___ oo N

nz(t)

Figure 9. Transmitted Reference Communications System
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received waveforms are given as

M@y = SO@m(e) + 0 (2) 0<s T

FO(y = m@) + o). (45)

It is assumed that the noises n,(¢), n,(¢) and m (¢) all are sample functions of independent

Gaussian processes with zefo means and covariance functions

N, ‘

E {n,®OM(N} = —= 8-, (46)
N02 L

E {n,(e)n, (1)} = > 8-, (47)
M

E {m()m(7)}

[

0
— 3(t-71).
> (¢-7) (48)

Such a situation would occur when a wide-band Gaussian noise m (¢) is used as the carrier
for transmitting digital signals and this noisy carrier is also transmitted over another chan-
nel for use by the receiver in the detection process.
The mean vector of 7(¢) is identically equal to zero and the covariance matrix

R%)(s,x) is given as
~

M, SO (1)SE(x) + Ny M SO @)

i) 8(‘ - I) 0 ' 4
R¥™W (t,x)y = —— (49)
@) V
Mos (=) My + N, ]

The inverse covariance function matrix Q U)(¢,x) is then
~

0(')(1,1) = ) 2 S(I-x) .
~ N01N02 +MO(N‘OQS(l)(‘)‘S(I)(x) +‘No,l)
My + N, M, 5% (x)
(50)
a M, S% () MOS(")(t)S(‘.)‘(x) +N,,

To further restrict the problem it is assumed that the transmitter is sending equi-
probable binary digits , the two possible signals being a signal 5(¢) and its negative,
that is, ‘ ‘

15



IS i=1

1—5(:) i =2,

In this case it can be shown that the bias term B () is the same for both hypotheses. The
logarithm of the likelihood function is then given as

T . 1), )
(K, + 4M, | SE)r'Ve) r' V@) de -1
0 N“No2 tM (N, 8% +N, )

log p(7[H;) - i , (52)

T Seeyr™M ey r® (e) we
o N01N02‘ +M0(No‘232.(‘) +No‘1)

i=2

K. - 4M
1 0

\ v
where Kl is a constant. Thus the optimum receiver calculates the quantity

T S(e)yrM () r'®(e) de

0 NoiNop TMo(N, %) +N )

Note that if 5(¢) is a constant the optimum receiver just computes the short-time cross-

correlation of the two received waveforms.

MAXIMUM A POSTERIORI PROBABILITY RECEIVER (ESTIMATION PROBLEM)
Let us now assume that the intelligence-carrying signal 5(¢t) is a sample function of
a Gaussian random process with zero mean and covariance R (¢,x). The signal is trans-
mitted through a multidimensional Gaussian random channel and the statistics of the
signal and the channel are independent. It is desired to operate on the set of received
waveforms, 7 (t), received during the interval (0, T), in order to obtain the maximum
posterior estimate of the signal S(¢). That is, the output of the receiver is to be that
particular realization of S(t) that maximizes the a posteriori probability p (S [7). Since
the logarithm is a monotonic increasing function of its argument, the realization of
S(¢) which maximizes the a posteriori probability will also maximize the logarithm of
. the a posteriori probability.
By analogy with the work on detection, let us assume a particular realization for S(¢)
and expand the set of received waveforms in the orthogonal expansion

™
HORE R ORI A O P R ($3)
1=l

where the 81;,(’ ){t) are eigenvectors of the matrix integral equation

16



T — — .
x]ﬂs) TR (,x) 6V (x) dx = 9;‘8’(:«), 0<e <T, (54)
0
and are orthonormal; that is,

. |
RGO R (59)

In these equations 7 (8)(¢) is the vectormean and ’1\{‘(3‘)‘(1,16) is the covariance function

matrix of the received waveforms, both assuming a particular realization of S(¢). Then,
the logarithm of the conditional probability ot 7(t) given a patticular S(t) can be written

- - 1 & 1
log p(715) = K+ 3 tog A0) -1 3 X a2 (56)
J =1 i =1

Let us now expand the signal S(¢) in an ordinary Karhunen-Lotve expansion. That is,

let
S() = s ﬁ \l’(t), ‘ (57)
j=1
where the () are the eigenfunctions of the integral equation
i
T
Y, J R (t,2) Vx) dx = o), 0<t< T, (58)
0

and are orthonormal,
T
T4 9,0 de = 5y (59)
Then the logarithm of the a priort probability of 5(¢) can be written as

1 | |
l°8 L 5 A (60)
j=1

log p(S) =

Nh—t
" M8

Using Bayes’ rule and referring to equations (57) and (60), the logarithm of the a
posteriori probability for S(¢) can be written
1 © (). 1 ® 1 ® ( (s) 1 ®
log p(S [7) = K + 5 5 log A %3 2 log7=3 T AC)G ¥-5 Zy.B% (61)
2 I =] ] 2] ] =1 1 =1
The signal S(¢) which maximizes the logarithm of the a posteriori probability will be found

by solving for the set of coefficients 5, that makes equation (61) a maximum. Thus, taking
the partial derivative of the terms in equation (61) with respect to 'Bk and setting the re-
sulc equal to zefo results in the equation

17



P }\’_(S) _3

g 1 3 AV N2) =9 B 62)
2 =1 }‘i S ﬁk / k&
‘ﬁk(t)‘ 7 ‘
Multiplying equation (64) by the expression ——— and summing over the index & results
Yk

in the following expression for the estimate of S(¢),

* .
. ® ®© CR RN () ° o , T Py (8)
sw=2 5 % L T 1y s 2 a6
2 j=1 k=1 B,Bk 7, 2 j=1k=1 aﬂk i 7,
j

* . . . . . 3 . .
The notation S (t) is used to indicate an estimate of 5(t). The functions with the super-
script* also depend upon this estimate.
It is desired to find more convenient forms for the terms on the right hand side of equa-

tion (63). It is shown in the Appendix that the first term can be written as

o ® AN Y, (0  TT w 3Q*(yx) |¥, )
1% LN T «L [[ 3 ) 222 Y ey 6w
2 ]'::1 k=1 >\ E,Bk 71‘ "0 0 k=1 B’Bk . 71‘
]
and the second term becomes.
@ @© Vi (t) o I'T 3
1y 5 9 ALY 0 1 [ — [y ]
S — [ A SLARS | [rx)-m @
2j=r k=1 E'Bk [ i(al) ] ’yk 2 k=1 06[ a/jk (x)
(65
P 10 ’
Qxy) [F)-7 )] ] ——dxdy.
~ Y,
k

Then the optimum estimate s {t) is given by the sum of these terms.

The inverse covariance function matrix Q(y,x) will, in general, be a function of the
intelligence-carrying signal. This functiona’l\‘wdependence may occur through the appearance
of terms which are explicit functions of S(x) and S(y). However, the matrix Q(y,x) can depend

implicitly on the intelligence-carrying signal; for example, Q(y,x) could be a function of

T
f{S2(z)dz. A similar situation may occur for the vector mean m(x). If the intelligence-
]

carrying signal appears in Q(y,x) and m (x) only in terms which are explicit functions of
S(x) and S(y), then it is shown in the Appendix that equation (64) becomes

Lo o 1 3N ¢, 0 ff [* agbﬂﬂ
=5 5 = = J ) R(t,x) Tr| R (x,y) = | dx dy, (66)
2 j=1k=1 ): 3B, Y, 69 ¢ L 9S(x) _J

’ , A .

and equation (65) can be written as

18



P22 3 *‘2M)_T‘T‘B,,T‘*(x)" * _
"i;,‘zrkéi?@ [h(e, )] Ye ofof 35w L )
(67)
— —* 3,9 @y) | o
- [T@)-m )] - 350 | [(7(&) - m G)IR, ¢ x)dx dy.
For this case, the optimum estimate of S(¢) is given by the expression
CIACRR
* T T o * ~ [ om (%) *
S ()= J R (t,x) | Tr[g (x,y)."'-‘—;‘]‘ +[ "0 (=y) -
0 o 9S(x) 3S(x)
. (68)
() 7] -2 (x’y)][ m o] | dyd
r m (x) —5§(x—)— 7(y) m (y) y ax.

In addition, if the covariance function matrix R(;x,y). is independent of the signal transmitted,
* ~ . ) )

the estimate § (t) is given as

. T T 3m (x) , .
S0y =J R (t,x) [ — c Q(xy) [TO)- o)) dy dx, (69)
0 0 9S8(x) ~

*
while if the vector mean (x)is identically equal to zero the estimate S (¢) can be written

Bg* (y,x)‘l‘ 3 ag (=,y)
- )

—_— ¢ e T(y) | dy dx. ‘
3S(x) | T 3 S(x) O)) dy dx. 20)

* T T " x
'@y = f R J T,[5 (x,7)
0 0

If the inverse covariance function matrix or the vector mean have an implicit dependence
on the intelligence-carrying signal, equations (66) through (70) do not apply but equations
(63) through (65) are still valid. Expressions similar to equations (66) through (70) can
still be obtained for particular problems but the form for these expressions would change
from problem to problem.

As an example of an estimation problem, again consider the transmitted reference com-
munications system shown in Figure 9. It is assumed that the intelligence-carrying signal
S(¢) is a sample function of a Gaussian process with zero mean and covariance R (¢,x). The
additive and multiplicative noises, m(t), "l(t‘) and nz(t), are again assumed to be sample
functions of independent Gaussian processes with zero means and covariance functions as
in equations (46) through (48). ‘

The inverse covariance function matrix of the received waveforms assuming a particu-
lar realization of S(¢) is then, from equation (50), given as



r My *Ny, - M, S5@)
|  28¢-%) |
20:9) =75 ¥MN,S0)SG) +Ng)) | |

01 '02
Lm0 M S(r)S(x) + N,

Note that this matrix only has an explicit dependence on the intelligencecarrying signal so that

- amyrx) ‘
equations (66) through (70) can be used. The quantity — 5o is then given as
x
3Q*(y,x) 28 (y2) M NooS0XMg * o) Nor(My +
35w My Ny, *M %, 505G +Nopl | G
MoNozsz(y) o 015(7) -
so that
“MN_.S (x)
_ITTr[R(xy) 2Q (yx)] dy - 0" o2 : .
05ty NoxNoz +M°{N02[S'(")]:2+N°'l]
and
T ag*(x,y) _ 2M [N, N, + M [1\'01 1, [5°() 121- ) ‘”(x)
JT@) + ———70) dy - - -
0 35(x) (N, Ny, + M NS (x)] + N, 1]
(74)

2M;-;N015 (=) [F D)) 2 2MN,,S (=) (Mg +N,,) [FD ) ]2

N (¢ ()] 2 2
[Ny 1Ny, * Mg [Noz[s’ (x)} 2 + Ny, 1]
E‘quations (73) and (74) are then substituted into equation (70) to obtain an expression for
S (¢). It is to be remembered that all terms affixed with an asterisk depend upon the
estimate S* (¢).
SUMMARY

Two classical problems in statistical communication theory, the detection and estima-
tion of intelligence-carrying signals, have been considered for the case of transmission
through a multidimensional Gaussian random channel. This channel is characterized by
the property that a deterministic signal results in a set of Gaussian (in general, correlated) -
received waveforms.

For the detection prc}’b’l‘em, a receiver was found which operates on the set of received
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waveforms and gives as outputs,voltages proportional to the likelihood functions of the
possible transmitted signals. Two configurations fcv this receiver are mathematically de-
scribed in equations (30), (31) and (32) and equations (36), (37) and (38). A modification
to this receiver which results in outputs which are proportional to the a posteriori proba-
bilities of the signals is described by equation (35). This theory was. then used to find
the optimum detector for FSK transmission through a particular type of fading channel.
The optimum detector was also found for a transmitted reference communications system.
For the estimation problem, a receiver was found which has as its output a signal
which is the maximum a posteriori estimate of the intelligence-carrying signal. Various
forms of this receiver are described mathematically in equations (63) through (70). As an
example, a mathematical expression was found for the optimum estimate of a Gaussian
intelligence-carrying signal for the case of a transmitted reference communications system.
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APPENDIX
In this Appendix, equations (64) through (67) of the text will be derived. The notation
of this Appendix, except for the omission of the superscripts*, will be identical to that of

the text and use will be made of previously defined functions.
Referring to the definition of the trace of a matrix given in equation (4), and using the

expansions for R (x,y) and 2(x,y) given in equations (12) and (14), we can write,

rT 30y, x)
00 - B/Bk

Fo6 )8, (] ]
N fT fT { g 2 i,m ‘ iyn o > g,'m(x)‘ﬁ" ly )| dxdy
0 0 m=1 n:]‘ i=1 K‘ ]=1 I l"”
ar (75)
9 (£)6 ly) o (x) S
T T M M| o in Y , mer
+f [ 2 2|z om > 'mﬁ Oatr)t
0 0 m=1a=1[i=1 i 1 k
38}, n‘(y) 1
+ 6 —— || ¥
l_,m(x) aﬁk

Noting the orthonormality of the vectors @ (x) this equation becomes

T T ‘ 90 {y,x) | ® I
0 0 ’ a,Bk ': i=1 )\l ’B];
(76)
T M o 34 (x) TH e, ae,.’n(y) 4
¥ b3 : Y LA B s 56 A .
Ofm=l 1"—% Bl,m be) B'Bk x ofn=1 j= ?’5,,

The last two expressions on the right hand side of equation (76) are zero as can be seen by

writing
9 T M T’
— i [ 2 6&) 8 (x)dx=1l, (77
3B o n= Jim g !
k 3
or P 6 L ®)
[ s 6 &) L——dz=0. (78)
O e T 5,
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. , AL .
Multiplying the remaining terms in equation (76) by —; —”;— and summing over the

k

index k results in the expression

an L) T op 31y, )] ¥, ()
, ,

1 -3 Ly TrI'R.('x,y) :
- 3z 1t 3" = .~ ¥
2 j=1 k=1 }\l ﬁk y]‘ k=1 2 0 o L aﬂk %

«© @ ]

dydx (79)

which is equation (64) of the text.
If an (x,y } depends on the intelligence-carrying signal (and thus on ,Bk,)» only through
the appearance of terms which are implicit functions of S(x) and S(y), then

3@ (y,x) 3Q ly,x) 9Q (y,x)
mn = __mn L)y e ), (80)
B,Gk 9S(y) 95 (x)
so that o S  TTH N ( )30m(xx‘)
J s s 1L _1 1 .= 3 5 R ‘&Y=
7 1% )‘xl_ LA 2 of of mELAEL ma oSly) |
. (81)
| : | TT M M 3 _bx) | o HBEIYL)
3 M)dydx* 2 /] 2 5SR xny) S |2 T | W
k=1 'yk 29 ¢ m=1na=1 m OStk) k=1 fA
* Since an &,y) = Q’m f,x) and
| g Y (8)y, (x)
RoGa) = § 07 (82)
s k=1 %
we can finally write
® o a)\ ¢ku) rr
Lss X 1 2 <[ [Ry,z Tr (83)
2 j=r k=1 }\i a'Bk ’}’k oo S '
which is equation (66) of the text.
From equations (53) and (55), we can write
T T (y — - — ‘
5 )‘,- ajz gofof[r (2) - 2 (x)) - ¢ (6, y Y7 (y) = m(y)]) dyds. (84)
=] 0

i
Taking the partial derivative of both sides of equation (84) with respect to 'Bk multiplying by
Y, (&) |

: and summing over the index k results in the equation
Y.
k
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_l ; g——a— A-. (a.)z 'k =
(85)
o T'T 9 - {¢)
-1 [ — [F x) -m(x)] + O(x,y)[r ly) - m lyd H— ¢ dxdy
2k=10 0 BB,‘ ’);‘

which is equation (65) of the text.

Let us restrict ourselves to the case where U(y,x) and m (%) depend on the intelligence-
carrying signal only through implicit functions of S(x) and S(y).

Then equation (85) can be rewritten as

@ 3 Yl TTanh)

1 2 2. —
-2 3 3 (A a —_— = [ 7 ‘
2 k=1 j=1 Bﬁk( ) % ofof 3567 Lyl by)-mly)]
o Y)Y |
s ,__._fk..x_ dxdy (86)
k=1 yk‘
90 f,y) o Y (e {x)
TT _ Yy L —
- [ [ [rte) -w(x) 1 - S“ [Tly)-mll = 2% dxady
0o as(x) k= 'yl‘
Referring to equation (82), equation (86) becomes
® o ? \p (¢)
-4 55 — (Aa?) = -
k=1j=1 aﬁk j 7 Yk
3Q(x )
T 137 (x) Y - .
= ‘ (x,y) - (x)-m(g)] « =~—0lr (y) rn(y)] (t.x)dxd
JI s 2 S R H ¢

[

which is just equation (67) of the text.
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